Near Zero Emissions Low-Swirl Combustion for Heating and Power

Robert K. Cheng

Leader, Combustion Technologies Group Environmental Energy Technologies Div. Lawrence Berkeley National Laboratory Berkeley, CA

http://eetd.lbl.gov/aet/combustion/LSC-Info/

What's Unique About Low-swirl Combustion?

LSC is a simple, yet sophisticated way to burn gaseous fuels (hydrocarbons & hydrogen) efficiently with very low NO_x emissions by a lower cost and durable burner

Low-Swirl Combustion (LSC)

- LSC is a novel aerodynamic combustion method conceived at LBNL
 - Radical approach
 - Operating principle defies current common practice
 - Adopted by researchers world-wide for fundamental studies
 - Technology transfer
 - LSC supports robust lean flames with near-zero emissions of $\mathrm{NO}_{\mathbf{x}}$ and CO
 - 2 US patents
 - Flame stabilization principle
 - Vane-swirler design
 - Basic knowledge facilitates development of scaling and engineering rules and practical implementation

Special Features

Premixture

Screen

Vane-swirler Exit tube

- "Floating" flame
 - Burner does not overheat
- Simple & low cost design
 - Ease of manufacturing
 - Conventional materials
- Adaptable
 - Wide operating conditions
 - Fuel-flexible (all gaseous fuels)
 - Scalable (7 kW to 22 MW)
- High performance
 - Near-zero emissions
 - High turndown
 - Quick startup and shutdown

LSC for Industrial Heating

- Technology transfer began in 1994
 - Supported by DOE Office of Science Laboratory Technology Research
 - First practical LSB designed for domestic water heaters of 50 kW
- DOE-EERE supported development for industrial applications
 - Scaled to large boilers with or without flue gas recirculation
 - Demonstrated ultra-low emissions operation in boiler systems
 - Further development for direct heat applications

Maxon Corp. Has Two Lines of LSC Products

- Maxon licensed LSC for industrial heating, baking and drying
- "Achieved industry best emissions without sacrificing cost or performance"
 - 4-7 ppm NO_x (@3%O₂) guaranteed
- M-PAKT burners (0.5 3.5 MMBtu/hr) available since 9/03
 - Fuel flexible with natural gas, propane and butane
 - 10:1 turndown without pilot assistance
 - Hundred of units installed
 - Improve product quality (paint curing & food processing)
 - 1st unit operating continuously since 2/02
- OPTIMA SLS gas/liquid dual-fuel burners (12 50 MMBtu/hr) introduced in 2006
 - 8", 10, 12" and 16" burner diameters
 - enhanced 13:1 turndown
 - backup liquid fuel firing
 - Two prototypes installed & several units in production

Development for Gas Turbines

- DOE Office of Electricity supporting the adaptation of low-swirl combustion to microturbines and megawatt-size turbines that utilize natural gas and other renewable and on-site generation fuels
- DOE Fossil Energy supporting development of lowswirl combustion as an enabling technology for FutureGen turbines in IGCC power plants utilizing high H₂ fuels
 - Seek OEMs and vendors as technical advisors and solicit comments and guidance on
 - Opportunities and risks of LSC for utility and H₂ turbines
 - Scale-up and adaptation targets and approaches
 - Identifying combustor and system integration issues
 - Developing and steering R&D plan that leads to concept demonstration
 - Forming partnerships to develop engine hardware

Low Swirl Injector for Solar Turbine T70

- Project metrics
 - $< 5 \text{ ppm NO}_{x} (@ 15\% O_{2})$
 - Transition to back-up fuels
 - Durable for at least 8000 hours
 - No more than 10% cost add-on
 - No negative impacts on gas turbine performance
- Developed "drop-in" retrofit for 7.7 MW Taurus 70 engine
 - Simple scalable design built from existing parts
 - No special requirements for materials and controls
 - Demonstrated in-engine 5 ppm NO_x
 - Demonstrated fuel-flexible capability
 - Potential for efficiency improvement
- Feature article in Gas Turbine World Vol. 36
 No. 6 Nov. Dec. 2006
- R&D 100 Award winner 2007

LSI Fired with Pure H₂ at simulated gas turbine conditions

Acoustic boundary

Resonant exhaust section

Optically accessible combustor section

LSI

Choke plate

- LSI evaluated in SimVal facility at National Energy Technology Lab. (NETL) in Morgantown WV
 - Baseline data for natural gas similar to Solar LSI
 - Demonstrated LSI operability with pure H₂ at 500 < T < 600K, 2 < P < 8 atm
 - NO_x emissions from H₂ and natural gas correlate with flame temperature
- Analytical model captures the governing flame/flow interaction process in LSI
 - Changes in flame position with increasing H₂
 - Verification of its validity at turbine conditions will provides a very useful tool for hardware development

Injection
Environmental Energy Technologies Division

Flame Temperature Dictates LSI NO_x Emissions Regardless of Fuel Type

Laboratory Studies Show LSI Amenable to Burning Pure H₂

- Dominant flame/flow coupling processes of H₂ and hydrocarbon flames are the same
 - Effects due to high diffusivity are impediments to open flame laboratory studies and can be addressed by engineering means
- Higher H₂ flame speed correlation accommodated by a small reduction of the swirl number
- Demonstrate the viability of the analytical model for H₂
 LSI design
- Encouraging results useful for guiding the development of H₂ LSI prototype for sub-scale and full scale demonstration at FutureGen

